

Abstract:

In the search for sources of renewable energy, this project focuses on utilizing rainwater as an option. A small-scale model consisting of a reservoir, a turbine connected to a generator, and a circuitry was designed to harness potential energy from rainwater. This model was made to determine the efficiency of the proposed system on a small scale. With this system, at a small scale, the data collected suggested that this design was not a realistic source of energy. On a larger scale, for which this system would be better suited, the design still proved lacking, but had potential to serve as a source of energy depending on cost of a realistic application.

Problem Definition:

Renewable energy has become a more prevalent means of harnessing energy as fossil fuels become scarce due to overconsumption over the past years. Thus, the goal of this project is to harness untapped potential energy from rainwater and convert that energy into something meaningful.

Design Requirements:

Time – Approximately 8 month turn-around *Money* – A \$400 budget is provided. Usable Flow – The system has limited flow *Energy* – Possible energy harnessed is limited by the flow of water *Turbine* – The size and variety of turbine are limited by flow *Rotor-Stator Device* – Compatibility with turbine & rating matter. *Battery* – Voltage must match rotor-stator output *Buildings* – testing limited by owner consent


Reaction Turbine		Pelton Wheel		Water Wheel	
Pros -Encompasses a	Cons -Specialized	Pros -Simple design	Cons -One primary	Pros -Simplest design	Cons -Requires very
wide variety of different turbine	turbine would need to be	-Can operate with a relatively low	usable design -Typically uses	of all the options -Least complex	large volumes of water
designs -Can operate with a low head	sourced for this project -Typically requires large volumes of water	volume of water	large heads of water	in terms of design -Multiple designs to choose from	-The water wheel would be significantly larger than other options
Permanent Magnet Generator		Alternator		Induction Generator	
Pros	Cons	Pros	Cons	Pros	Cons
-Widely used in small-scale systems. -Built-in converter to DC -Converts to direct current (DC) -Permanent magnet means no external source needed	-Magnet deteriorates over time. -Voltage regulation needed via additional circuit	-Widely used in small- & large- scale systems. -Converts to alternating current (AC) -Better control over voltage regulation (adjust magnet strength	-Rectifier Circuit needed to convert to DC	-Less maintenance -Can operate over a wide range of speeds -Converts to direct current (DC)	-More expensive -Lower efficiency -Needs external power source to initiate generation

 Table 1. Pros & Cons of Rotor-Stator & Turbine Alternatives

HARNESSING ENERGY FROM WATER RUN-OFF

Eh Hsee '24, Daniel Nandsaram '24, Ethan Wilkie '24 Advisor: Dr. Clayton Byers

Final Design and Implementation:

- The test system consists of: bucket.
- A stand holding the reservoir.
- A pipe extending from the reservoir.
- A generator + turbine at the pipe's end. A water collection container.
- A connected circuit for measuring voltage and current.
- A siphon for passive drainage of water.

turbine and generator.

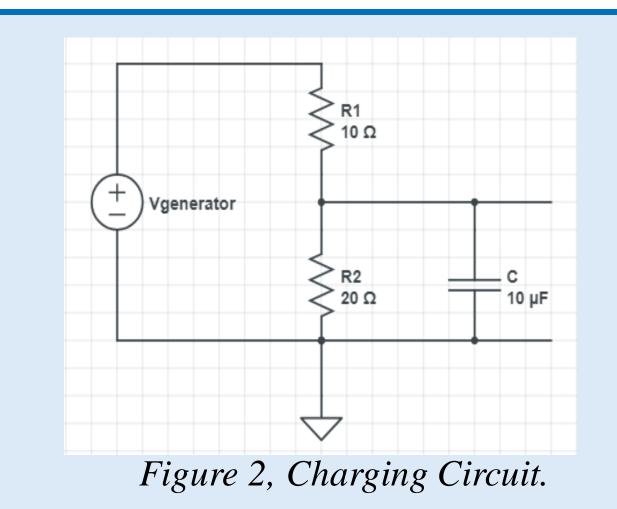


Table 2, results for power measured using the turbine and generator without the siphon.

No						
Siphon 🖂	Trial 1 🛛 🗸	Trial 2 🖂	Trial 3 🖂	Trial 4 🖂	Trial 5 🛛 🗠	Total Average 🖂
Average V	1.821	1.676	1.892	1.792	1.812	1.799
Current (I)	0.629	0.579	0.653	0.619	0.626	0.621
Power (W)	1.145	0.970	1.236	1.109	1.134	1.119

Table 3, results for power measured using the turbine and generator with the siphon.

With						
Siphon 🖂	Trial 1 🗠	Trial 2	Trial 3 🖂	Trial 4	Trial 5 🖂	Total Average 🗠
Average V	1.161	1.050	1.050	1.151	1.109	1.104
Current (I)	0.401	0.362	0.362	0.397	0.383	0.381
Power (W)	0.466	0.380	0.381	0.457	0.424	0.422

Table 4, summarized data for predicted vs. measured results for harnessed power, both with and without the sinhon

	Without Siphon	With Siphon		
Predicted Power	15.55W	14.13W		
Measured Power	1.119W	0.422W		
% Difference	92.80%	97.01%		

References:

Polansky, Chris. "The Biggest Amazon Warehouse in New England Is Now Open in Windsor, CT." Connecticut Public, 3 May 2023, www.ctpublic.org/news/2023-05-02/gov-lamont-cuts-ribbon-atnew-amazon-warehouse-in-windsor-the-biggest-in-new-england. Simms, Dan. "Compare Electricity Rates in Connecticut (April 2024)." EcoWatch, 22 Jan. 2024, www.ecowatch.com/electricity/rates/ct.

A water reservoir in the form of a 5gal

This test stand was used for experiments quantifying flow behavior and the amount of electrical power being harvested by the

Evaluation Design

Process:

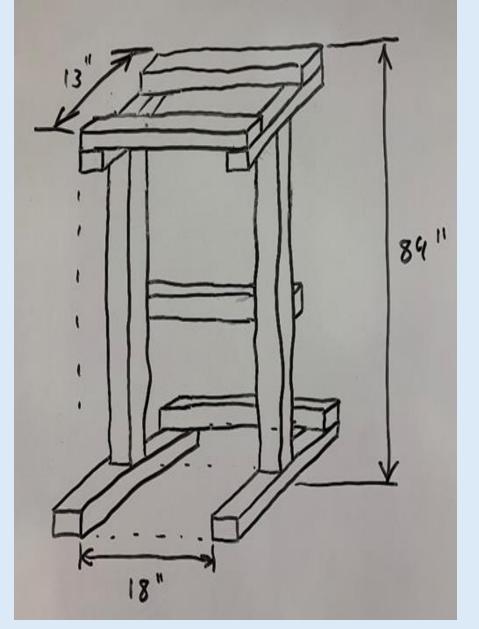
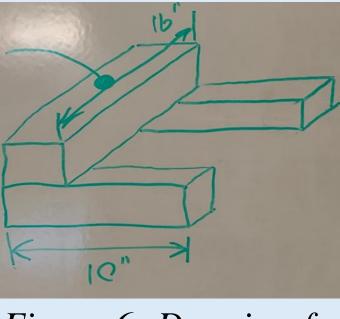



Figure 3, Early drawing for test stand design.

Figures 3-5 above show part of the iterative design process for designing the test stand for the project, from early drawing to a complete stand.

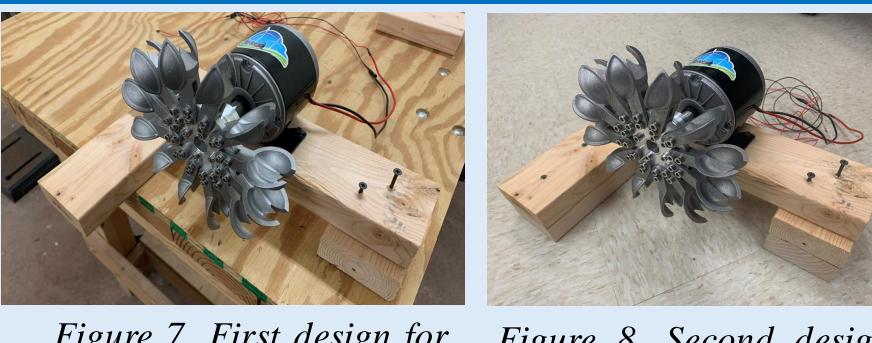


Figure 6, Drawing for turbine stand design.

Figures 6-8 above show part of the iterative design process for the turbine and generator base, designed to fit in the water collection container and iterated on to allow the turbine enough height such that the water level in the container did not interfere with turbine movement.

Discussion, **Recommendations:**

Without the siphon, only 7.20% of the power present in the flow was harnessed by the system. With the siphon, 2.99% of the power was harnessed. Taking the data gathered and applying it to more meaningful applications, the following was determined:

- This would generate \$667.82 of electricity (Simms).
- electricity.

Our system was ultimately unable to generate enough power and electricity on a larger scale for such an application of renewable energy to be feasible.

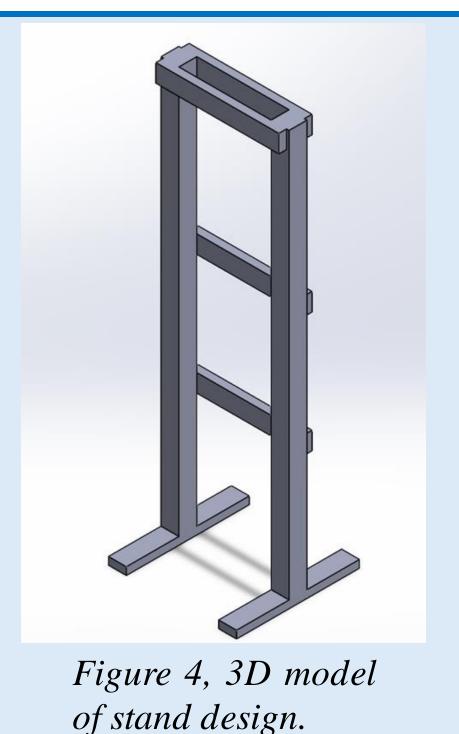


Figure 5, Final design of test stand.

Figure 7, First design for turbine stand.

Figure 8, Second design for turbine stand.

Conclusions,

and

Using the Amazon Fulfillment Center Warehouse in Windsor, CT, our system would generate 2520kWh (Polansky).

Using Trinity's Math, Engineering, and Computer Science Center, our system would generate 3.21kWh and save \$0.85 of