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PROBLEM DEFINITION AND BACKGROUND
An increase in incidences of earthquakes in the global context of climate change underscores an urgent need for effective earthquake mitigation strategies. Earthquakes pose significant risks to infrastructure and lives, demanding more precise and 
reliable methods for understanding and predicting their impact. Despite advances in seismic technology and geological studies, the ability to predict earthquake magnitudes accurately and in a timely manner remains a profound challenge in the field of 
earthquake engineering and seismology. Current technologies and models focus predominantly on the detection and recording of seismic activities, leaving a gap in the post-event analysis and real-time predictive capabilities. Most existing 
models are either too specialized to handle diverse data types or not robust enough to provide precise magnitude estimations, which are crucial for effective emergency responses and preparedness planning.
In response to this, our project aims to enhance the analytical capabilities of seismic data analysis through the application of machine learning techniques. 

DESIGN REQUIREMENTS
Accuracy: The model must achieve a mean absolute error (MAE) of less than 0.25 
when predicting earthquake magnitudes, ensuring high reliability in its predictions.
Data Handling: Capable of processing both raw time series waveform data and 
structured features extracted from the waveforms.
IEEE Standard for Floating-Point Arithmetic (IEEE 754): Ensure all computational 
operations adhere to this standard for precision and consistency in calculations.
ISO/IEC 25012:2008 (Data Quality): Comply with data quality standards for 
accuracy, completeness, consistency, and credibility, essential for the reliability of 
earthquake predictions.
ISO/IEC 27001: Information Security Management: Adhere to information security 
management standards to safeguard seismic data.

DESIGN ALTERNATIVES
Algorithm Selection: We evaluated four different algorithms based on their 
suitability for handling seismic data:
1.Random Forest (RF): Known for its effectiveness in regression tasks and ability to 
handle high-dimensional data. It provides good interpretability and robust 
performance without extensive parameter tuning.
2.Convolutional Neural Network (CNN): Highly effective in spatial and temporal 
data analysis, making it suitable for waveform data which has inherent spatial-
temporal characteristics.
3.Support Vector Machine (SVM): Renowned for its robustness in classification 
tasks and its effectiveness in high-dimensional spaces, though typically less used 
for regression in complex, noisy data environments like seismic data.
4.Long Short-Term Memory (LSTM): An advanced type of recurrent neural network, 
ideal for time series data due to its ability to remember long-term dependencies, 
crucial for the temporal nature of seismic waveforms.

Data Input Selection: We considered two types of input data:
1.Time Series Waveform Data: Direct use of raw seismic waveforms, which 
preserves all original temporal and amplitude information, potentially enabling 
more nuanced detection of seismic features.
2.Extracted Features: Using statistical and spectral features extracted from the 
waveform data, which could simplify the model training and focus on the most 
informative attributes of the data.
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FINAL DESIGN AND IMPLEMENTATION DESIGN EVALUATION AND ITERATIVE PROCESS
Evaluation Criteria: For evaluation of which machine learning models best fit our 
project requirements we primarily focused on two metrics:
1.Mean Average Error (MAE): Measures the average magnitude of the errors in a set of 
predictions, without considering their direction.
2. Model Timing: This involved measuring how long it takes for each model to train and 
then to predict new data points. This metric is crucial for our application since the 
ability to process data rapidly is essential for timely earthquake warnings.

Iterative Process: 

DISCUSSION, CONCLUSIONS, AND RECOMMENDATIONS 
The Hybrid CNN-LSTM Random Forest Model developed in this project significantly advances seismic data analysis by accurately determining earthquake magnitudes from recorded events, laying a crucial foundation for enhancing real-time 
earthquake monitoring and predictive modeling. The LSTM model effectively harnessed the temporal dynamics inherent in time series waveform data, while the Random Forest model leveraged structured features extracted from the same data to 
enhance prediction accuracy. This hybrid approach capitalized on the strengths of both models, addressing the complex nature of seismic data, which includes non-linear patterns and significant noise levels. 
With more time, this project can be expanded to predict future earthquakes by incorporating real-time data and historical patterns and using adaptive learning to refine predictions based on new seismic activity.

Data selection: 
Decided on raw 

seismic 
waveform data. 

Considered 
multiple seismic 

data sources, 
based on data 

format and 
quality decided 

on Sanford 
Earthquake 

Dataset (STEAD)

Goal Adjustment: 
Initially aimed at 
predicting future 

earthquakes using 
historical seismic 

data, we found this 
goal too ambitious 
given our time and 

expertise constraints 
and refined our 

project to predicting 
the magnitude of 
recorded seismic 

waves.

Model Selection: 
Trained all 

algorithm options 
and compared 

MAE and 
training/testing 

times. Decided a 
hybrid CNN-
LSTM deep 

learning model 
was most 

suitable for this 
data format and 

task.

Model Tuning: 
Fine tuned 

hyperparameters 
and 

added/removed 
layers based on 
their effect on 

MAE and model 
timing. Then 

measured MAE of 
the final CNN-
LSTM model.

Re-evaluation: 
Considered other 

options for 
improving the 

accuracy of our 
model. We 

decided that the 
nature of the raw 

seismic 
waveforms didn’t 

give us enough 
information.

Data selection: To 
get more 

important 
information out of 
the seismic data 

and improve 
accuracy we 

explored features 
that could be 

extracted from the 
waveforms and 

compiled them in 
a CSV.

Algorithm 
alteration: To train 

on the new data 
format we again 
trained each of 
the algorithm 
options and 

decided on the 
most accurate 
and fastest one 
for this data, the 

RF model.

Feature 
evaluation: Using 

permutation 
importance with 

training the RF 
model we sorted 

features by 
importance and 

dropped the least 
important ones.

Model Architecture: We adopted a hybrid approach 
combining a Long Short-Term Memory (LSTM) network and a 
Random Forest regression model. This ensemble strategy 
allowed us to leverage the strengths of both models: the LSTM 
for capturing temporal dependencies in raw time series 
waveform data, and the Random Forest for handling extracted 
features from the same data, enhancing prediction accuracy.
Data Preprocessing: We preprocessed the seismic 
waveform data by cleaning and filtering out noise, and then 
extracting relevant features such as spectral and statistical 
characteristics. This preprocessing step was crucial for 
preparing the data for input into both the LSTM and Random 
Forest models.
Data Splitting: We adopted a 70-15-15 training, testing, 
validation data split for a balanced distribution of data that 
could be used for unbiased model evaluation.
Final MAE on test data set: 0.21171509433962274

Data refinement: To further increase 
accuracy and computational 

efficiency we filtered training data to 
the Los Angeles area. The intention 

is that with transfer learning this 
trained model can be trained on data 

from more regions.

Ensemble learning hybridization: 
Wanting to retain insights from both 

models and forms of data, we 
applied an ensemble learning 

stacking technique to generate the 
final output predictions.


	Slide 1

